

NoSQL
Jeff Conrad
07/08/2010

Images: Digital Blasphemy

NoSQL: DEFINITION

> Non-relational

> Distributed

> Open-source

> Horizontally scalable

> Not-only SQL refers to:

> Class of non-relational storage

> Do not require fixed schema, nor joins

> Relaxes ACID properties

Why NoSQL?

> Web-scale databases (LinkedIn, Facebook,
Google)

> Handle spikes (social, cloud)

> Throughput

> Limitation is Disk not CPU

> Shift from deterministic to probabilistic

> Frequent schema changes

> Open source communities

3 Papers to Read up on...

Bigtable: A
Distributed Storage
System for
Structured Data

http://labs.google.com/papers/bigtable-osdi06.pdf

2

3 Dynamo: Amazon’s
Highly Available
Key-value Store

http://s3.amazonaws.com/AllThingsDistribute
d/sosp/amazon-dynamo-sosp2007.pdf

1 Towards Robust
Distributed Systems

http://www.cs.berkeley.edu/~brewer/cs26
2b-2004/PODC-keynote.pdf

(2000 - Brewer)

(2007 - Amazon)

(2006 - Google)

ACID vs. BASE Acronyms

> Atomicity
> Consistency
> Isolation
> Durability

> Basically
> Available
> Soft-state
> Eventual
 Consistency

ACID vs. BASE EFFECTS

> Consistency
> Isolation
> Focus on commit
> Nested transactions
> Availability?
> Conservative
> Pessimistic
> Schema
> Slow Evolution

> Stale data OK
> Availability first
> Best Effort
> Approximate
 answers OK
> Aggressive
> Optimistic
> Simpler
> Faster evolution

The CAP Theorem

Consistency

Availability

Partition tolerance
“You can have at most two of
these properties for any
shared-data system”
- Brewer

BigTable is a CA
system; it is strongly

consistent and
highly available, but

can be unavailable
under network

partitions

Dynamo is an AP system; it is
highly available, even under

network partitions, but
eventually consistent.

Distributed
databases with
pessimistic locking

Brewer's Conclusions

> Availability

> Evolution

> Graceful Degradation

> Think probabilistically

> Working < 100%

> Fault tolerance < 100%

> Partial results OK, better than none

> Capacity x completeness = constant

NoSQL: Wide Column Store

 > Hadoop / HBase
 > Cassandra (Facebook)
 > Hypertable
 > Cloudera

Lists: nosql-database.org

NoSQL: Document Store

 > CouchDB
 > MongoDB
 > Riak
 > Terrastore
 > ThruDB
 > OrientDB
 > RavenDB

Lists: nosql-database.org

NoSQL: Key Value / Tuple Store

 > Amazon Simple DB

 > Azure Table Store

 > Chordless

 > Redis

 > Scalaris

 > G. T. M

 > Scalien

 > Berkeley DB

 > MemcacheDB

 > HamsterDB

 > Pincaster

 > GenieDB Lists: nosql-database.org

NoSQL: Key Value / Tuple Store
> Amazon Dynamo

> Voldemort

> Dynomite

> KAI

Lists: nosql-database.org

NoSQL: Graph Databases
> Neo4J

> Sones

> InfoGrid

> HyperGraphDB

> AllegroGraph

> Bigdata

> DEX

Lists: nosql-database.org

Apache Cassandra/Hector/Thrift

> Cassandra is a distributed database based on
Dynamo and Bigtable

> Hector is a Java Cassandra Client

> Thrift is a systems interface to
open services to multiple
languages

Lists: nosql-database.org

Weaver, E. Up and Running with Cassandra.
http://blog.evanweaver.com/articles/2009/07/06/up-and-running-with-cassandra/

Weaver, E., Cassandra data model misconceptions, and their sources.
http://www.mail-archive.com/cassandra-
dev@incubator.apache.org/msg00732.html

WTF is a SuperColumn? An Intro to the Cassandra Data Model by Arin
Sarkissian
http://arin.me/blog/wtf-is-a-supercolumn-cassandra-data-model

http://blog.evanweaver.com/articles/2009/07/06/up-and-running-with-cassandra/

Cassandra Terminology

 > Column = key-value pair + timestamp (attribute)

 > Super Column = map of attributes (row)

 > Standard Column Family = map of rows (table)

 > Super Column Family = map of tables (table of tables)

 > Keyspace = map of column families (database)

Voldemort

 no complex query
filters

 all joins must be done
in code

 no foreign key
constraints

 no triggers

Voldemort: Cons and Pros

> Only efficient queries are possible, very predictable
performance

> Easy to distribute across a cluster

> Service-orientation often disallows foreign key
constraints and forces joins to be done in code
anyway (because key refers to data maintained by
another service)

> Using a relational db you need a caching layer to
scale reads, the caching layer typically forces you
into key-value storage anyway

> Often end up with xml or other denormalized blobs
for performance anyway

> Clean separation of storage and logic (SQL
encourages mixing buisiness logic with storage
operations for efficiency)

> No object-relational miss-match

> No complex query filters

> All joins must be done in code

> No foreign key constraints

> No triggers

Don't Forget

> Backups and Recovery

> Capacity Planning

> Performance Monitoring

> Data Integration

> Tuning and Optimization

